Seven Suggestions for Best Practices
in Data Collection

Philip A. Schrodt

Parus Analytical Systems
schrodt735Qgmail.com

March 29, 2014



1. Version control

Data sets change as additional cases and bugs are uncovered.

Data set will necessarily be released before they are perfect
because they will never be perfect.

Storage is very very cheap now.

Formal version control systems such as GitHub are awkward to
learn but may still be worth doing. But at the very least have a
systematic way of keeping backups.

Provide a versioned method of citing your data.



2. Automate as much of the process as possible

In a large system, this reduces costs. In any system, it improves
quality control and transparency.

Resist the temptation to say “I’ll do this by hand because I'm
only going to do it once”: you won’t do it once.

There are a lot of tools available now for this, both proprietary,
open access (Google) and open source.

If you are writing a system for machine-assisted human coding,
your system should work through a web browser, not dedicated
software.



3. Coders selected for convenience are very expensive

As a recovering academic now in the private sector, I'm
observing that both GRAs and UGRAs are, with very few
exceptions, an extraordinarily bad deal from an economic
perspective. Particularly GRAs.

Recruiting coders on the web—decentralized, not necessarily
crowd-sourced—is likely to be less expensive. Committed
coders provide better quality and consistency.

I am very skeptical about data produced “for free” in class
assignments: anything that can be coded by uncompensated
and usually poorly supervised undergraduates should be
crowd-sourced.



4. Store everything in a text format

Binary formats—anything you can’t read—become unavailable
over time. Even Microsoft’s. Someone will want your data in
thirty years.

Which text format probably isn’t important: we don’t know
what the future standards will look like anyway, and programs
to translate from common existing formats (e.g. .csv, XML)
will undoubtedly be available.

Self-documenting formats are a good thing, though no single
standard has caught on.



5. Code in a framework that is compatible with existing
ontologies

They don’t have to be the same—I'm giving up trying to get
you COW people to use ISO-3166—but they need to be easily
translated (e.g. R countrycodes package or
CountryInfo.txt).

Coding systems that are almost but not quite compatible
impose a huge burden on future users.



6. The data generation process must be 100%
transparent to protect against mistakes and fraud

To err is human; to really screw up requires a
computer

This is a general issue in the sciences—a major new case
appears almost weekly now—and not just political science.

Thanks to Gary King’s unwelcome hectoring on replication,
political science has long-established (though rarely enforced)
standards on this which other disciplines are only now finding
are necessary.

There are simply too many ways to make mistakes in a complex
analysis—they are all complex—not to require full transparency.

Computational tools also make fraud much more easy—as the
natural sciences are discovering—and 100% transparency is the
only solution.



7. The data generation process must be 100% open
source to protect against violations of trust

All successful systems accumulate parasites

Trusted open source networks provide incredible leverage and
productivity.

Like any trust network, some individuals—and particularly
large organizations—will try to exploit trust, taking from the
system and contributing nothing in return: if you haven’t
learned about the D/C strategy in iterated prisoner’s dilemma
uh. ..really?

I'd like to say people/organizations don’t do this because they
are evil, just because they are human, but in fact, they do it
because they are evil.

RESIST! And ruthlessly punish defectors, just like the theory
tells us to do.






Thank you

Email: schrodt735@gmail.com

Slides:

http://eventdata.parusanalytics.com/presentations.html

Software: https://openeventdata.github.io/



