
CIVET
Contentious Incident Variable Entry Template:

Where we are, what should we do next?

Philip A. Schrodt

Parus Analytics
Charlottesville, Virginia
schrodt735@gmail.com

Presentation at Odum Institute, University of North
Carolina at Chapel Hill

13 July 2015



Developments since March

I Switched from Flask to Django framework
I Built-in supervisor/user authentication
I Django interfaces with a mySQL database
I But consequently requires more resources and cloud

deployment is more difficult

I Defined a full document format in YAML

I Used “ckeditor” to create a annotation/editing system

I Implemented coder/extraction system to work with the
annotation



Accessing the code
https://github.com/philip-schrodt/CIVET-Django



Installation on Macintosh

1. In the Terminal, run
sudo pip install Django

2. Download the Civet system from
https://github.com/philip-schrodt/CIVET-Django,
unzip the folder and put it wherever you would like

3. In the Terminal, change the directory so that you are in
the folder Django CIVET/djcivet site

4. In the Terminal, enter
python manage.py runserver

5. In a browser, enter the URL
http://127.0.0.1:8000/djciv_data/

https://github.com/philip-schrodt/CIVET-Django
http://127.0.0.1:8000/djciv_data/


At which point you should see. . .



Civet component “layers”

I L0: log-in/authenication
Status: not implemented but will use the existing Django
facilities

I L1: Translation of raw texts into YAML format
Status: prototypes for Factiva

I L2: Reading/writing YAML files
Status: fully implemented except for audit trail

I L3: Sorting texts between “collections”
Status: prototyped in Flask

I L4: Annotation/editing
Status: fully implemented

I L5: Coding/extraction
Status: implemented except for linkage to new categories



YAML Components

I Collection: Sets of related texts
Meta-data: date, comments

I Texts: Individual texts in original and annotated form
Meta-data: source, publisher, license, author, geographical
location, comments

I Cases: variables coded from this collection
Meta-data: coder, date coded, comments



YAML Example



ckedit: Annotation and Editing



Coding from Annotated Text



Extracting Specific Types of Information from
Annotated Text



Remaining steps to reach beta 1.0
I Authentication

Status: not written but Django has this built in

I Read/write sets of collections as zipped files
Status: code written but not integrated

I Audit trail
Status: not implemented but everything has been written
with this in mind

I Specifying customized sets of annotation terms
Status: prototyped but not integrated

I Sorter
Status: very ugly Flask prototype; probably needs to be
re-written

I Documentation and training videos
Status: work in progress



Key open question: how will this be deployed?

I Individual system: fully operational on Mac OS-X; still
needs testing on Linux and Windows but this should
mostly be an issue of getting Django installed

I Cloud: Deploying on Google App Engine is proving to not
be straightforward but other systems might be

I Server at Odum: do we need this?

I Multiple-user/coding-farm server at PI institution: Are
there general solutions here?



Additional design issues

I Persistent vs. transient data: should the data remain on a
server or always use upload/download?

I Turn-key vs. model code: Are we better off with a more
limited but well-documented system that can be used
“off-the-shelf” or a more complex system that will usually
require some additional customization?

I Additional features vs. additional documentation vs.
making it look pretty

I Anyone ready to be a [supported] guinea pig for this?
“The early bird gets the worm but the second mouse gets
the cheese”



General categories of additional features - 1

For additional details, see 12 July 2015 memo “Prioritizing features for

Civet (Contentious Incident Variable Entry Template)”

I Document and work-flow management utilities
I Formatting source texts into YAML collection format
I Automatic sorting and classification
I Post-processing utilities, e.g. multiple output formats,

reliability and consistency checks
I Allocating texts to coders

I Look and feel
I Make it pretty
I Maintain the basic system in Flask?
I Hide/show fields
I Conditional fields in forms



General categories of additional features - 2

I Automated annotation
I Dates, which are complicated
I Regular expressions
I Geolocation
I Numerical equivalents to words: “ten”, “two hundred”,

“many”, “dozens”

I Coding form
I Additional HTML5 fields for numbers and dates
I Local and remote name and code standardization
I Templates which automatically fill in fields
I Pattern-based and/or dynamic “best-guess” completion
I Consistency checking



Thank you

Email:
schrodt735@gmail.com

Slides:
http://eventdata.parusanalytics.com/presentations.html

Software:
https://github.com/philip-schrodt/CIVET-Django


