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Why Move to Distributed Computation?

“In pioneer days they used oxen for heavy pulling, and when one ox
couldn’t budge a log, they didn’t try to grow a larger ox. We shouldn’t
be trying for bigger computers, but for more systems of computers.”

-Grace Hopper



e An open source framework for distributed computing

e Two primary subprojects:
e MapReduce: distributed data processing
o HDFS: distributed data storage

MapReduce jobs typically written in Java

Hadoop Streaming: API for using MapReduce with other languages
e E.g., Ruby, Python, R

Additional subprojects: Pig, HBase, ZooKeeper, Hive, Chuckwa, etc.



MapReduce in Detail

A two step paradigm for big data processing

To implement:

o Specity key-value pairs as input & output for each phase
e Specify two functions: map function and reduce function

Map phase: perform a transformation (e.g., field-extraction, parsing,
filtering) on each individual piece of data (e.g., row of text,
tweet, vector) and output a key-value pair

Reduce phase: (1) sort and group output by key, (2) compute an
aggregate function over the values associated with each key, (3)
output aggregates to disk



Hadoop vs. Other Parallelization Approaches

e Other Parallelization Approaches:

e Break tasks up by hand, submit pieces individually to HPCs
o Split tasks via other parallelization paradigms (e.g., MPI)

e Hadoop Drawbacks:

More complex (debugging, configuration)
Less intuitive, steep learning curve
Availability & access

Bleeding edge

e Hadoop Benefits:

o Flat scalability & efficient processing

e Open Source

o Integration with other languages, computing tasks
e Reliable/robust big data storage and processing



Hadoop on SDSC’s ‘Gordon’ Supercomputer

e Overviews of Gordon can be found here and here

Available via the NSF’s Extreme Science and Engineering Discovery
Environment (XSEDE)

e Register at XSEDE (free)
e Request or join (via, e.g., PSU’s Campus Champion Allocation) a
Gordon-Allocation (not always free)

Benefits:

o Full base Hadoop framework available (see here)
e Easy Hadoop job scheduling/submission via MyHadoop

Drawbacks (as of April 2013):

e Hadoop compliments (e.g., Hive, HBase, Pig) aren’t available
e Relevant libraries for (e.g.,) R and Python aren’t installed


http://www.sdsc.edu/supercomputing/gordon/
http://seed.ucsd.edu/mediawiki/index.php/Setup_On_Gordon_Node
https://www.xsede.org/
http://www.sdsc.edu/us/resources/gordon/gordon_hadoop.html
http://www.sdsc.edu/us/consulting/myHadoop-SDSC.pdf

A Selection of Hadoop’s Built-in (Java) Example Scripts

e wordcount: A map/reduce program that counts the words in the input files

® aggregatewordcount: Aggregate map/reduce program to count words in input files
e multifilewc: A job that counts words from several files

® grep: A map/reduce program that counts the matches of a regex in the input

® dbcount: An example job that counts the pageview counts from a database

e randomwriter: A map/reduce program that writes 10GB of random data per node
e randomtextwriter: A map/reduce program that writes 10GB random text per node
® sort: A map/reduce program that sorts the data written by the random writer

e secondarysort: An example defining a secondary sort to the reduce

® teragen/terrasort/teravalidate: terabyte generate/sort/transfer

® pi: A map/reduce program that estimates Pi using a monte-carlo method

For online tutorials on these, see here, here, and here.


http://www.michael-noll.com/blog/2011/04/09/benchmarking-and-stress-testing-an-hadoop-cluster-with-terasort-testdfsio-nnbench-mrbench/
http://hadoop.apache.org/docs/r1.0.4/mapred_tutorial.html
http://hanishblogger.blogspot.com/2012/12/how-to-run-examples-of-hadoop.html

Running Example: ICEWS News-Story Corpus

60 European and Middle Eastern countries

All politically relevant stories, January 2001 to July 2011
Document: Individual news-story (first 3-4 sentences)
6,681,537 Stories

Removed: punctuation, stopwords, numbers, proper nouns, etc.

Stemmed words



Applying wordcount to Entire News-Story Corpus


http://salsahpc.indiana.edu/tutorial/hadoopwc1.html
https://sites.google.com/site/continuelearning/Home/hadoop-class/hadoop-pseudo-cluster-setup
http://wiki.apache.org/hadoop/WordCount

Applying wordcount to Entire News-Story Corpus

e What are the most frequent (stemmed) words?


http://salsahpc.indiana.edu/tutorial/hadoopwc1.html
https://sites.google.com/site/continuelearning/Home/hadoop-class/hadoop-pseudo-cluster-setup
http://wiki.apache.org/hadoop/WordCount

Applying wordcount to Entire News-Story Corpus

e What are the most frequent (stemmed) words?

e Map Stage: assign <key,value> pairs to corpus
e Read in X-lines (stories) of text from corpus
e Input <key,value>: <line-number, line-of-text>
e Output <key,value>: <word, one>


http://salsahpc.indiana.edu/tutorial/hadoopwc1.html
https://sites.google.com/site/continuelearning/Home/hadoop-class/hadoop-pseudo-cluster-setup
http://wiki.apache.org/hadoop/WordCount

Applying wordcount to Entire News-Story Corpus

e What are the most frequent (stemmed) words?

e Map Stage: assign <key,value> pairs to corpus

e Read in X-lines (stories) of text from corpus
e Input <key,value>: <line-number, line-of-text>
e Output <key,value>: <word, one>

e Reduce Stage: sum individual <key, value>’s from Map tasks

e Input <key,value>: <word, one>
e Output <key,value>: <word, occurrence>


http://salsahpc.indiana.edu/tutorial/hadoopwc1.html
https://sites.google.com/site/continuelearning/Home/hadoop-class/hadoop-pseudo-cluster-setup
http://wiki.apache.org/hadoop/WordCount

Applying wordcount to Entire News-Story Corpus

e What are the most frequent (stemmed) words?

e Map Stage: assign <key,value> pairs to corpus
e Read in X-lines (stories) of text from corpus
e Input <key,value>: <line-number, line-of-text>
e Output <key,value>: <word, one>

e Reduce Stage: sum individual <key, value>’s from Map tasks

e Input <key,value>: <word, one>
e Output <key,value>: <word, occurrence>

e | Node— 8 minutes; 4 Nodes— 5 minutes


http://salsahpc.indiana.edu/tutorial/hadoopwc1.html
https://sites.google.com/site/continuelearning/Home/hadoop-class/hadoop-pseudo-cluster-setup
http://wiki.apache.org/hadoop/WordCount

Applying wordcount to Entire News-Story Corpus

e What are the most frequent (stemmed) words?

Map Stage: assign <key,value> pairs to corpus
e Read in X-lines (stories) of text from corpus
e Input <key,value>: <line-number, line-of-text>
e Output <key,value>: <word, one>

Reduce Stage: sum individual <key, value>’s from Map tasks

e Input <key,value>: <word, one>
e Output <key,value>: <word, occurrence>

1 Node— 8 minutes; 4 Nodes— 5 minutes

406,466 unique “words”


http://salsahpc.indiana.edu/tutorial/hadoopwc1.html
https://sites.google.com/site/continuelearning/Home/hadoop-class/hadoop-pseudo-cluster-setup
http://wiki.apache.org/hadoop/WordCount

Applying wordcount to Entire News-Story Corpus

e What are the most frequent (stemmed) words?

Map Stage: assign <key,value> pairs to corpus
e Read in X-lines (stories) of text from corpus
e Input <key,value>: <line-number, line-of-text>
e Output <key,value>: <word, one>
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1 Node— 8 minutes; 4 Nodes— 5 minutes
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For online tutorials on Hadoop’s wordcount, see here, here, and here.


http://salsahpc.indiana.edu/tutorial/hadoopwc1.html
https://sites.google.com/site/continuelearning/Home/hadoop-class/hadoop-pseudo-cluster-setup
http://wiki.apache.org/hadoop/WordCount

Word-Stem Frequencies for ICEWS News Corpus
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Cluster Analysis of Country News-Reports
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Cluster Analysis of Country News-Reports

Do country-news reports cluster in interesting ways?

K-Means on all 60 countries’ news reports (1000 per country)

Specify 60 clusters and set no. of iterations to 10

Examine variation in cluster assignments across countries



K-Means with MapReduce/Java

e Map Stage: assign word values to (new) minimum distance clusters
e Read in vectorized story-words (vv), and previous centers
e For each word (v), apply distance function to find nearest center
e Output <key,value>: <center;,v>


http://cmj4.web.rice.edu/Kmeans.html
http://cmj4.web.rice.edu/MapRedKMeans.html
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K-Means with MapReduce/Java

e Map Stage: assign word values to (new) minimum distance clusters

e Read in vectorized story-words (vv), and previous centers
e For each word (v), apply distance function to find nearest center
e Output <key,value>: <center;,v>

e Reduce Stage: row bind and average <key, value>’s from Map tasks

e Input <key,value>: <center;, v >
e Output: New center; = mean(< center;, vv >)

e Non-Hadoop—1hr, 45 min; Hadoop—51 minutes

For running K-Means in Java, see here. For extending K-Means in Java to
MapReduce and Hadoop, see here.


http://cmj4.web.rice.edu/Kmeans.html
http://cmj4.web.rice.edu/MapRedKMeans.html
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Moving from Hadoop/Java to RHadoop

Write and implement Hadoop jobs in R via Hadoop Streaming

This requires three RHadoop packages: rhdfs, rmr, rhbase

e Also requires additional prerequisite packages (e.g., rJava)
o Also requires that you install and build Thrift

Install & set-up Hadoop, RHadoop, and Streaming on EC2

Use Amazon Elastic MapReduce (EMR) to run RHadoop via
Streaming

Overviews of RHadoop, and installation info: here, here, here, and here.


https://github.com/RevolutionAnalytics/RHadoop/wiki/Downloads
http://wiki.apache.org/thrift/ThriftInstallation
http://blog.revolutionanalytics.com/2011/09/mapreduce-hadoop-r.html
http://blog.revolutionanalytics.com/2012/03/r-and-hadoop-step-by-step-tutorials.html
http://blog.revolutionanalytics.com/2012/08/ryan-rosario-on-parallel-programming-in-r.html
http://www.adaltas.com/blog/2012/05/19/hadoop-and-r-is-rhadoop/

Ready-Made Examples for RHadoop

Basic data analysis

e Word count

Logistic Regression

K-Means (also here)

Linear Least Squares


http://bighadoop.wordpress.com/2013/02/25/r-and-hadoop-data-analysis-rhadoop/
https://github.com/RevolutionAnalytics/rmr2/blob/master/docs/tutorial.md
https://github.com/RevolutionAnalytics/rmr2/blob/master/docs/tutorial.md
https://github.com/RevolutionAnalytics/rmr2/blob/master/docs/tutorial.md
http://www.bytemining.com/files/talks/larug/hpc2012/HPC_in_R_rev2012.pdf
https://github.com/RevolutionAnalytics/rmr2/blob/master/docs/tutorial.md

Getting Started on Hadoop

e For those interested in trying out Hadoop on Gordon...

e QuaSSIHadoop.zip

e Readme, .sh scripts, output files, error files, and all necessary input
files for 4 basic Hadoop jobs:
e Simple: a simple setup and usage example
o TestDFS: depth-first search (DFS) benchmark
e TeraSort: sorting benchmark
e Wordcount: word frequencies



Contact:
beb196@psu.edu

jub270@psu.edu
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