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Abstract

This article demonstrates the advantages of using zero-inflated count models to forecast civil
conflict. To do so, negative binomial (NB) and zero-inflated negative binomial (ZINB) count
models are applied to a novel country-month event-count dataset of rebel and government-initiated
violent conflicts. Using out-of-sample forecasts to compare model predictions of the conflicts
occurring within these data, we find that moving from a NB model to a zero-inflated count model
can produce up-to an 13% improvement in civil conflict forecasting accuracy. We also find that
including (1-3 month) lagged values of monthly conflict frequency in the inflation stage of our zero-
inflated conflict models can lead to as much as a 12% improvement in conflict forecasting accuracy.
Substantively our findings suggest that, while past values of government and rebel initiated conflict
are indeed positively related to present values, the magnitude of this positive relationship tends to
be overstated when zero-inflation is not accounted for.
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Introduction

Political scientists have recently demonstrated the importance of prediction to the advancement

of our theoretical and practical understandings of civil conflict (Ward, Greenhill and Bakke 2010;

Weidmann and Toft 2010; Brandt, Freeman and Schrodt 2011). However, across the sciences, sta-

tistical forecasting tools are almost exclusively designed for either binary or continuous dependent

variables (Czado, Gneiting and Held 2009). This limits our ability to forecast intrastate conflicts,

since across most levels of temporal and spatial aggregation, “civil conflict” is best operationalized

through intermediary levels of measurement such as counts, durations, and discrete (un)ordered

outcomes with more than two categories.1 Nevertheless, scholars interested in predicting conflict

have favored dichotomous dependent variables over these richer measures of civil conflict, due

(in part) to the forecasting limitations mentioned above. When applied to graduated social-science

variables (such as civil conflict), this practice of dichotomization discards relevant information (i.e.

variance) and can exacerbate any existing measurement error within one’s variable of interest (Co-

hen 1983). As a consequence, scholars have found artificial dichotomization to be detrimental to

both prediction and theory testing (MacCallum et al. 2002; Royston, Altman and Sauerbrei 2006).

To address these problems, our study builds upon recent statistical advances in probabilistic

count-data forecasting (Gneiting, Balabdaoui and Raftery 2007; Czado, Gneiting and Held 2009)

to present the first comprehensive forecasting analysis of civil conflict frequency. In doing so, this

article introduces a number of useful statistical tools for the evaluation, refinement, and presen-

tation of conflict-event count forecasts. We then demonstrate with these tools that—when used

correctly—count models can produce compelling levels of calibration and sharpness in civil con-

flict predictions. Notably, we find that by leveraging count models’ split-population modeling

capabilities in a manner that statistically accounts for the presence of excess (i.e. structural) ze-

roes within civil conflict data, one can further increase conflict-count forecasting accuracy by as

much as 13%.2 To this end, we take a novel approach, and include past levels of (government and

1See for example, Hegre, Ostby and Raleigh (2009) for a count measure of civil conflict, Fearon (2004) for a
duration measure of civil conflict, Besley and Persson (2009) for a discrete ordered measure of civil conflict, and
Buhaug (2006) for a discrete unordered measure of civil conflict.

2On average, for both government and rebel initiated conflicts, when using an “at-least one monthly conflict”
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rebel initiated) material conflict in the inflation stage of our forecasting count-models. It is argued

and shown below that doing so helps to account for the adverse effects of structural zeroes on our

abilities to forecast civil conflict processes. Specifically, we find that the addition of 1-3-month

lagged measures of (logged) civil conflict counts to the inflation stages of our forecasting models

increases our ability to predict actual instances of out-of-sample monthly conflict by as much as

12%.3

This article proceeds as follows. In the next section we discuss the prevalence of zero-inflation

in conflict data, outline the benefits of addressing this problem with zero-inflated models, and

present a rational for the inclusion of lagged conflict measures as inflation stage covariates. We

then introduce a newly developed event dataset of monthly (rebel and government initiated) civil-

conflict counts, justify our choice of zero inflated count model, and apply this model to a training

set of these monthly conflict-count-data. The heart of our analysis section then uses our train-

ing dataset, a validation dataset, in-sample and out-of-sample predictions, classification matrices,

marginal calibration diagrams, and sensitivity plots to demonstrate that accounting for zero infla-

tion with past levels of material conflict can substantially increase the accuracy and precision of

one’s (already commensurate) civil conflict forecasts. Following our analyses, we conclude by

discussing the implications of our findings for those interested in the modeling and forecasting of

civil conflict events data.

Theoretical Approach

Yearly, monthly, and weekly aggregations of militarized conflict—whether measured at the

dyad, country, or sub-country level—are often “inflated” with structural zeroes (Clark and Regan

2003; Pevehouse 2004; Hill et al. 2011). These zeroes represent peace-observations that would

likely never experience conflict under any realistic levels of one’s time-varying covariates. For in-

stance, within dyad-year studies of interstate war, pairs of countries such as Switzerland and Costa

threshold and our out-of-sample forecasts.
3On average, for government and rebel initiated conflicts, when using an “at least one monthly conflict” threshold.
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Rica (i.e. “irrelevant dyads”) have consistently been considered to be structural zeroes4 since such

dyads could never go to war with one another due to their geographic distance and limited military

capabilities. Treating these cases as “peace-zeroes” within a statistical model of conflict can lead

to biased inferences because such cases effectively have zero probability of ever experiencing an

event of interest (Lemke and Reed 2001; Clark and Regan 2003; Quackenbush 2006; Xiang 2010).

On the other hand, truncating all potential structural (peace-year) zeroes from one’s sample ex-

cludes a significant proportion of relevant-conflict observations (Bennett and Stam 2004, 61) and

produces selection bias (Lemke and Reed 2001; Xiang 2010). As an alternative to these to ap-

proaches, scholars have begun to recognize that, by (1) including all observations in one’s analysis

and (2) then accounting for the likelihood of zero-inflation among peace observations probabilis-

tically, one can address the challenges created by structural zeroes in an unbiased fashion (e.g.,

Clark and Regan 2003; Benini and Moulton 2004; Pevehouse 2004; Xiang 2010). Specifically,

this approach allows one to use ex-ante observable and theoretically informed covariates to ac-

count for the probability that a given zero observation is structural, and to then probabilistically

discount these structural zeroes’ leverage within one’s primary analysis; without dropping these

observations entirely.

The zero-inflated technique described above has proven to be especially useful to studies of

civil conflict (e.g., Hultman 2007; Hegre, Ostby and Raleigh 2009). For example, in a department-

month study of human rights violations committed by the Revolutionary Armed Forces of Colom-

bia (FARC), Holmes, Pineres and Curtina (2007) find that there were many department-months

in their sample of all Colombian departments wherein the FARC was not active at all. The au-

thors accordingly account for these structural zero-observations with a zero inflated count model,

since the FARC was likely incapable of committing any number of human rights violations greater

than zero in departments where it is not active, and find that doing so yields valuable theoretical

and statistical insights into the underlying dynamics of civil conflict onset and intensity. At the

country-year level, advanced industrialized polities have similarly been shown to engender a non-

4See for example, Weede (1976); Maoz and Russett (1993) for a discussion of “relevant dyads”.
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negligible quantity of structural-zeroes within ordinal variables of government repression and civil

war (Hill et al. 2011). As above, truncating all such advanced-industrialized countries from one’s

civil conflict analysis is likely to produce selection bias and exclude a non-negligible number of

actual (and potential) instances of civil conflict. Indeed, even within advanced industrial democ-

racies, minority groups occasionally rebel gainst the state (Gurr 1993), and home-grown terrorist

attacks can occur. The 1995 Oklahoma City bombing in the United States and the 1995 Tokyo

subway sarin gas attack in Japan are two sobering examples of the latter phenomenon. For those

interested in producing accurate and comprehensive civil conflict forecasts, these are very costly

cases to miss. We therefore propose that, when faced with the potential of excess zeroes in a civil

conflict forecasting application, analysts can make the most of conflict forecasts by (1) including

all zero-observations in the forecasting model and (2) accounting for any resultant zero-inflation

econometrically:

• Hypothesis 1: Modeling conflict frequency with zero inflated count models will improve the

accuracy of civil conflict count forecasts.

However, the advantages of zero-inflated models (over comparable non-zero inflated models)

are dependent upon one’s inflation stage specification. That is, given the existence of structural ze-

roes, a zero inflated model’s ability to reduce the adverse effects of zero inflation on one’s outcome

stage analysis is contingent upon the degree to which these models’ inflation stages accurately

distinguish between structural zeroes (in our case the “always-zero” observations) and count-stage

zeroes (e.g. peace-years that could potentially experience conflict under different circumstances).

Due to the inherent rarity of conflict in space and time, this prerequisite represents an especially

acute challenge for applications of zero-inflated models to studies of conflict. Indeed, while a

great many covariates do have statistically significant relationships with inter and intra-state con-

flict, each variable therein tends to explain only a small amount of the actual variation in conflict

onset and escalation (Beck, King and Zeng 2000; Bennett and Stam 2004; Ward, Greenhill and

Bakke 2010). As consequence, a majority of the most well-known correlates of civil conflict have
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been shown to offer only a negligible—and at times negative—level of improvement in actual con-

flict forecasting accuracy (Ward, Greenhill and Bakke 2010). This deficiency limits our ability

to effectively use such covariates, where theoretically appropriate, in the inflation stages of zero

inflated, civil conflict count models. Indeed, such covariates will explain little of the true variation

in our inflation stage process.

One exception, however, in terms of both explanatory and forecasting power, is an observa-

tion’s past levels of conflict. Such lagged conflict values have been consistently identified as

being among the largest and most robust predictors of subsequent inter and intra-conflict levels

(e.g., Lichbach and Gurr 1981; Gurr and Lichbach 1986; O’Brien 2002, 2010). Indeed, conflict

researchers have found that inter and intra-state conflicts exhibit a strong temporal dependence

(Beck, Katz and Tucker 1998; Weidmann and Ward 2010) and that our conflict forecasts can be

vastly improved by the inclusion of a series of temporally lagged values of past conflict (Pevehouse

and Goldstein 1999; Shellman, Hatfield and Mills 2010). We argue here that these past levels of

conflict (or lack thereof) not only directly affect subsequent levels of civil conflict in a reciprocal or

inertial sense,5 but also help to inform us, ex-ante, as to which countries are currently able to expe-

rience any level of domestic conflict. In this manner, one can improve both our conflict forecasting

accuracy—and our understanding of conflict processes—by including lagged conflict measures as

inflation stage covariates.

Specifically, we contend that zero-inflated peace-observations not only arise cross-sectionally,6

but also evolve (and devolve) temporally, even within conflict-prone states. As the above discus-

sion of zero-inflated conflict studies elucidated, it is indeed very likely that many civil-conflict

“peace-observations” are cross-sectional structural-zeroes, representing (for example) advanced

developed democracies whose probability of experiencing any rebel or government initiated do-

mestic material conflict under reasonable circumstances is effectively zero for all time periods.

However, even among conflict-prone countries, un-observed, secret, or informal truces can arise

5See, for example, Gurr (1970); Hibbs (1973); Francisco (1995) for theories of reciprocal hostility; and Goldstein
and Freeman (1990) for a ‘policy-inertia’ theory of conflict.

6E.g., as a result of geography or slow moving variables such as institutions and GDP.
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between government and rebel forces due to (for example) concerns over extremist factions sab-

otaging peace negotiations (Kydd and Walter 2002; Wanis-St. John 2006), tit-for-tat dynamics

(Axelrod 1984), or environmental and social pressures such as mediators, religious observances,

or seasonal harvests. Such temporary stalemates may be unobservable to any actors other than

the two sides involved, or they may be common knowledge that—due to resource constraints—

cannot be archived and coded for all observations. A recent example of such a phenomenon can

be found in 2006 media reports of a “secret truce” between British troops and Taliban forces in

southern Afghanistan, where after months of heavy fighting, both sides agreed to pull out of the

town of Musa Qula resulting in a temporary peaceful stalemate in the area.7 Scholars have iden-

tified comparable instances of secret truces or defacto stalemates in civil conflict arenas as varied

as the Russian Revolution (Wandycz 1965), the Irish Confederate Wars (Lehinan 2002, 73), the

El Salvador civil war (Wood 2003). Similar to the aforementioned (and time-invariant) low con-

flict propensities within advanced industrialized states, self-enforcing truce-periods of this sort are

marked by unobserved characteristics that disproportionately preclude domestic actors from initi-

ating any level of conflict greater than zero. In this sense, the recent occurrence (and levels) of civil

conflict should serve as an informative, time varying proxy for the broader-array of unobservable

factors that often preclude a given observation from ever experiencing conflict. This leads to our

second hypothesis:

• Hypothesis 2: Past levels of civil conflict serve as significant and robust predictors of zero

inflation within zero inflated conflict-count models.

Analysis

Datset and Dependent Variables

This paper uses a newly developed, Integrated Conflict Early Warning System (ICEWS) event-

dataset to forecast the monthly frequencies of domestic civil conflict events within 29 Asian coun-

7“British Troops in Secret Truce with Taliban,” The Sunday Times 2006.
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tries for the years 1997-2004 and 2005-2010 (O’Brien 2010).8 These ICEWS data are part of a

Defense Advanced Research Project Agency (DARPA) funded project which has recently created

a dataset of over 2-million machine-coded daily events occurring between relevant actors within

the Asia-Pacific region. To machine code these events, the ICEWS project utilized news arti-

cles from over 75 electronic regional and international news sources. The coding of these news

stories was then undertaken by the Penn State Event Data Project’s TABARI (Text Analysis By

Augmented Replacement Instructions) software program (Schrodt 2009) and a Lockheed-Martin-

developed java variant of TABARI known as JABARI. Specifically, TABARI and JABARI used

sparse parsing and pattern recognition techniques to machine-coded millions of news stories from

the aforementioned news sources for daily political events based primarily on a categorical coding

scheme developed by the Conflict and Mediation Event Observation (CAMEO) project (Schrodt

and Yilmaz 2007; Schrodt, Gerner and Yilmaz 2009). The resultant ICEWS events-dataset has re-

cently been characterized as being “the most accurate event dataset currently available” (D’Orazio,

Yonamine and Schrodt 2011, 4).

For our analysis, these raw ICEWS-coded events data were aggregated to the country-month

level (it) for two specific domestic-actors of interest: government-actors and violent-rebel-actors.

In doing so, we created two specific dependent conflict-variables. The first dependent variable

is government con f lictit , which is a monthly count of government-actor9 initiated, domestic ma-

terial (i.e. physical, rather than verbal) conflicts targeting violent rebel-actors operating within a

government’s own country. The second dependent count variable is rebel con f lictit , which ag-

gregates monthly counts of violent rebel-actor10 initiated material conflicts targeting government

actors within a rebel’s country of origin. We choose to disaggregate conflict measures separately

into government and rebel-actor initiated conflicts because recent findings suggest that a failure to

do so increases the risk of Type I and II errors in studies of intrastate conflict (Shellman, Hatfield

8The 29 countries included in the analysis are listed in the Appendix and encompass all Asian and Oceanic polities
with a population above one million.

9Government members, including members of governing parties and coalition partners; military troops, soldiers,
all state-military personnel; and police forces and officers were all considered to be “government actors”.

10Domestic rebels (armed and violent groups and individuals), insurgents, and separatist groups were all considered
to be “violent rebel actors”.

8



and Mills 2010). To create these two variables, daily ICEWS-coded events were first collapsed

into daily counts of government-actor→rebel-actor and rebel-actor→government-actor country-

level material conflicts. The resulting country-day event-counts for government material conflict

and rebel material conflict were then aggregated to the monthly-count level for use as independent

and dependent (monthly) count-variables below. Each of our dependent variables have 5,040 ob-

servations across our entire 1997-2010 sample period. Frequency histograms for for government

and rebel con f lictit are presented in Figure 1, and indicate that the ranges of these variables are

[0−98] and [0−126] conflicts per-month, respectively.

[Insert Figure 1 about here]

Model Selection

Given the event-count nature of our two dependent variables, we next identify several suitable

count models (and associated distributions) for the forecasting of our events of interest. To this end,

we first considered using a set of ordinary Poisson count models. However, the histograms pre-

sented above suggest that our government con f lictit and rebel con f lictit count distributions contain

both an excess number of zero counts (i.e. “peace-country-months”) and a right-skewed series of

relatively high count values. Together these traits suggest that each dependent count variable ex-

hibits high degrees of overdispersion and positive contagion. This is confirmed by examining the

standard deviations of government con f lictit and rebel con f lictit , which with values of 6.82 and

6.10 (respectively), are significantly larger than these variables’ respective means of 1.89 and 1.81.

Conditional overdispersion,11 if present, would violate a Poisson model’s mean-variance equality

assumption, which would thereby undermine the Poisson model’s applicability in estimating and

forecasting the event counts described above. Accordingly, the negative binomial (NB) model is

favored as a baseline forecasting model below, as it accounts for conditional overdispersion by

through a parameterized relaxation of the mean-variance equality assumption. However, as argued

above, there is also strong reason to believe that many of the excess zeroes observed within our

11That is, the persistence of count-overdispersion once one has conditioned on all covariates.
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dependent variables are not true count-level zeroes, in the sense that they could ever take on val-

ues greater than zero. Rather, it is likely that many of these “peace-months” are structural-zeroes,

representing cases such as Japan or New Zealand, whose probability of experiencing any rebel

or government initiated domestic material conflict, under reasonable circumstances, is effectively

zero. Even within traditionally conflict prone countries, un-observed, secret, or informal truces

could arise between government and rebel forces due to (for example) concerns over extremist

factions sabotaging peace negotiations (Kydd and Walter 2002; Wanis-St. John 2006), tit-for-tat

dynamics (Axelrod 1984), or environmental and social pressures such as religious observances or

seasonal harvests. Similar to the time-invariant qualities of Japan and New Zealand mentioned

above, unobserved truce-months of this sort are marked by unobserved characteristics which dis-

proportionately preclude domestic actors from initiating any level of conflict greater than zero. If

such phenomena do exist, then these cases would engender a second, time varying form of struc-

tural zeroes within our sample of interest.

Ignoring either form of structural zeroes, and treating such observations as count stage zeroes

in an NB count model, can bias one’s coefficient estimates and standard errors (Greene 2003;

Buu et al. 2011), whereas an ad-hoc removal of all potentially-inflated zeroes from one’s sample

likely discards relevant conflict-observations and produces selection bias (Lemke and Reed 2001;

Bennett and Stam 2004; Xiang 2010). In order to avoid these biases, our structural zeroes must be

accounted for statistically through the use of a zero inflated Poisson (ZIP) or zero inflated negative

binomial (ZINB) model. The ZIP and ZINB models specifically allow one to explicitly model

and test for the presence of inflated zeroes through likelihood functions which combine the results

from a binary equation—estimating whether a zero observation is more likely to have come from

the zero-only or count-stage d.g.p—with the results of a NB or Poisson likelihood equation that

directly tests for the effect of one’s covariates on the expected frequency of government con f lictit

or rebel con f lictit , conditional on the likelihood that a given observation was generated from the

count-stage d.g.p. Accordingly, we expect in our analysis that ZIP and ZINB models will be

superior to Poisson and NB models for the modeling and forecasting of government con f lictit and
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rebel con f lictit . Furthermore, due to the aforementioned presence of many extreme (high-count)

values in government con f lictit and rebel con f lictit , conditional overdispersion was believed to

be persistent in our dependent variables and models, even after accounting for the zero-inflation

described above. We therefore favored the ZINB model over the ZIP model for all zero-inflated

forecasts discussed below.

A variety of model selection statistics confirmed our suspicions. Vuong comparison tests for

non-nested models (Vuong 1989) are the most appropriate comparison tests for our models of

interest, and these tests were accordingly used to compare ZIP, ZINB, NB, and Poisson models

for all model specifications presented below. Vuong tests indicated that across all specifications,

the ZINB model outperforms the ZIP, Poisson, and NB models at the p < .01 level, while the NB

model outperforms the ZIP and Poisson models at the p < .01 level. Likelihood ratio tests were

also conducted where applicable, and similarly suggested both that the ZINB model is superior to

the ZIP for our dependent variables of interest, and that the NB model was superior to the Poisson

model across all models compared. Standard information based model selection criteria are also

prominently featured in comparisons of count and zero inflated models and therefore are applicable

here (Harris and Zhao 2007; Czado, Gneiting and Held 2009). Accordingly, Akaike information

criterion (AIC) comparisons were calculated and compared for all models used below, with each

comparison therein preferring the NB and ZINB models to comparable Poisson and ZIP models,

as well as preferring our ZINB models over our NB models. To summarize, the zero-inflated,

overdispersed nature of our dependent variables suggests that count models of the NB and ZINB

variety should used for the modeling and forecasting of government con f lictit and rebel con f lictit ,

and NB and ZINB models are therefore the statistical forecasting models that are estimated and

evaluated for their predictive capabilities in the following analyses.

Independent Variables

The primary independent variables used for forecasting government con f lictit and rebel con f lictit

are past monthly counts of material domestic conflict. The use of lagged conflict-count measures

as predictors within conflict forecasting models has become common in the field, in part due to
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the challenges associated with the scaling of conflict-cooperation scored events.12 For the study at

hand; one, two, and three month lags of rebel initiated material conflict and government initiated

material conflict were included in the forecasting models of both our government con f lictit and

rebel con f lictit dependent variables. The natural log of each lagged conflict variable (+0.5) was

then taken prior to its inclusion on the right hand side of our models in order to ensure that out-

liers were not disproportionately influencing the analysis.13 For our ZINB models, all independent

lagged-conflict variables were then included within both the zero inflation stage and count stage

estimating equations. As argued above, the justification for using these lagged covariates within

our inflation stage rests on the contention that recent levels of monthly conflict (or lack thereof)

directly inform us, with ex-ante observability, as to which country-months are currently able to ex-

perience domestic conflict, and which are not. If correct, this strategy will allow us to statistically

partition our (potentially) ‘inflated zero’ cases from the true ‘count-zero’ conflict cases, and to

thereby improve the accuracy and precision of our count stage estimates and our conflict forecasts.

Drawing from several recent civil conflict studies, a limited number of control variables are

also included in the models reported below. In the count stages of our NB and ZINB models, we

include yearly measures of the natural log of GDP per capita, GDP growth, and the natural log of a

country’s total population,14 as—unlike many commonly studied correlates of intrastate conflict—

these three variables have been found to make large substantive contributions to our ability to

predict civil war (Ward, Greenhill and Bakke 2010). GDP per capita has also been found to be

a strong predictor of a country’s likelihood of ever experiencing domestic political violence (Hill

et al. 2011), and accordingly, we also include ln GDPpc within the inflation stage of our ZINB

models. As robustness tests, we then re-ran all models discussed below (i) without ln GDPpc,

GDP growth, or ln population (i.e. with only our lagged conflict measures included as covariates)

and (ii) with a range of additional controls added to each model.15 The findings and conclusions

12See (e.g., D’Orazio, Yonamine and Schrodt 2011).
13Logging the independent variables did not dramatically affect our results, although it did moderately improve the

calibration of the NB forecasts for all time periods examined (the ZINB forecasts remained relatively unchanged).
14These three measures are taken from the World Bank’s World Development Indicators (World Bank 2011).
15Additional controls included monthly counts of verbal (government and rebel) conflict events, monthly counts of

verbal (government and rebel) cooperative events, the natural log of GDP, and the natural log of unemployment.
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discussed below remain unchanged under these alternative specifications. Finally, in an exercise

that is presented and discussed further below, we also explored the inclusion of additional monthly

conflict lags as independent variables in our NB and ZINB models. To foreshadow, we find that

including lagged conflict measures beyond 3-month lags as independent variables generally does

not improve the forecasting accuracy of our models, and in some cases slightly reduces accuracy.

Thus, we choose not to include conflict measures beyond 3-month lags in the main models reported

directly below.

Estimation Model Results

ZINB and NB models of government con f lictit and rebel con f lictit are estimated with 1-3

month lags of ln government con f lictit and ln rebel con f lictit included as our key predictors. All

models are estimated on a training dataset encompassing the 1997-2004 country-month sample,

with the aim of evaluating the forecasting accuracy of these model-estimates on a country-month

validation dataset encompassing the years 2005-2010. The 1997-2004 training models thus serve

as our primary models of reference here. Comparable ZINB and NB models were also estimated

on the entire 1997-2010 dataset in order to evaluate whether any discrepancies existed in proba-

bility distributions across the 1997-2004 training sample and 2005-2010 validation sample, and

no major discrepancies were found.16 Coefficient estimates, standard errors, and goodness-of-

fit statistics for the training models are presented in Table 1 for both government con f lictit and

rebel con f lictit . Several conclusions can be drawn from these model estimates and test statis-

tics. Beginning first with the count stages of the government con f lictit models in the left-hand

columns of Table 1, we can see that for both the ZINB and NB models, higher recent levels of

ln government con f lictsit (t−1 to t−2) are associated with higher levels of current government

con f lictit at least at the p < .05 level, as are higher levels of ln rebel con f lictit−1. However,

ln rebel con f lictit−3 is not statistically distinguishable from zero in either model. Moreover, ln

government con f lictsit−3 and ln rebel con f lictit−2 are positive and statistically significant only

within the NB model. Overall these findings suggest that the positive reciprocal relationship be-

16These full models are not reported here to save space, but are available upon request.
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tween past and future levels of government-to-rebel conflict diminishes sharply over time, whereas

the inertial attributes of government conflict are relatively more persistent. Moreover, the generally

larger NB coefficient estimates may also indicate that—by not accounting for zero inflation—our

NB models of government con f lictit overestimate our coefficient estimates and standard errors,

which if further corroborated below, would be strong support for hypothesis 1. Regarding our

three count-stage controls, GDP growth is not statistically significant in either of the government

con f lictit models, while ln GDPpc and ln population are only significant within our NB model.

For the NB model, these two latter control variables suggest that countries with (i) lower levels

of development or (ii) higher populations are likely to experience more frequent conflict, which is

intuitive.

Turning next to the zero inflation stage of the 1997-2004 government con f lictit models, we

can see that—in support of hypothesis 2—all lagged values of ln government con f lictit are neg-

atively associated (at the p < .01 level) with the likelihood that a zero-observation belongs in our

hypothesized “zero-only” regime. The same can be said for the coefficient estimates of the lagged

values of ln rebel con f lictit , with the exception of the coefficient estimate for ln rebel con f lictit−3.

Hence, our inflation-stage results suggest that zero-observations that have experienced higher fre-

quencies of recent civil conflict are more likely to be count-stage zeroes rather than observations

that could never experience civil conflict. On the other hand, current peace-observations that have

experienced little to no recent conflicts are more likely to be structural zeroes, rather than zero-

cases that could have reasonably experienced conflict under different circumstances. Ln GDPpc

is positive and significant in our ZINB inflation stage which indicates that higher levels of devel-

opment decrease the likelihood that a country will ever experience violent government conflicts

targeting rebel groups. In sum, the ZINB and NB government-conflict models in Table 1 suggest

that past values of government and rebel initiated material conflict are positively associated with

current monthly frequencies of government initiated conflicts, although the causal pathways and

estimated relationships therein tend to differ in magnitude and precision.

[Insert Table 1 about here]
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We find similar results for the 1997-2004 rebel con f lictit models reported in Table 1. For in-

stance, ln government con f lictit−1 is positive and significantly related to rebel con f lictit in both

of our rebel con f lictit models. However, in the count stages of the ZINB and NB rebel con f lictit

models in Table 1, the coefficient estimates for ln government con f lictit−2 and ln government

con f lictit−3 are not consistently significant. In fact, although generally positive, these two vari-

ables are insignificant and occasionally negative-in-sign within these ZINB and NB rebel-conflict

models, perhaps suggesting that neither variable has a robust relationship with rebel con f lictit .

Turning to the lagged ln rebel con f lictit outcome-stage variables, we can note that ln rebel con f lictit−1

and ln rebel con f lictit−2 are positive and significant across both models of rebel conflict, implying

that increases in past values of rebel initiated conflict have a positive effect on the frequency of

rebel con f lictit .17 As above, ln GDPpc and ln population are significant (only) in our NB model,

which again suggests that (i) higher levels of development and (ii) smaller populations each de-

crease the frequency by which countries experience conflict. Additionally, across both our ZINB

and NB rebel con f lictit models, we find here that GDP growth is negative and significant. This

finding implies that higher levels of economic growth lead to lower frequencies of rebel initiated

conflicts.

Within the inflation stage of the rebel con f lictit ZINB model, all lagged values of ln rebel

con f lictit and ln government con f lictit are negative and significant, save for ln government con f lictit−1.

The former results suggest that increases in past levels of government and rebel initiated civil con-

flict generally decrease the probability that a peace observation is from the “zero-only” d.g.p., and

increase that observation’s likelihood of coming from the conflict-count d.g.p. On the other hand

ln GDPpc is not significant in our rebel con f lictit inflation stage, suggesting that development

has little effect on preventing a country from ever experiencing a violent rebel-initiated conflict

against government actors. Lastly, as above, we can note in Table 1 that the NB model tends to

overestimate our count-stage coefficient estimates and standard errors, which is consistent with

our expectations of zero inflation, as well as with the results reported for the Vuong tests and AICs

17Although ln rebel con f lictit−3 is not statistically significant.
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above. Hence, for the two rebel-conflict models in Table 1, higher (lower) past levels of govern-

ment and rebel initiated conflict are generally associated with higher (lower) current levels of rebel

initiated conflict at statistically significant levels, although the predicted relationships for the NB

and ZINB models diverge in both the precision of their estimates and the substantive magnitude of

their estimated relationships.

Classification Matrices

To better evaluate the relative performances of our 1997-2004 NB and ZINB models in terms

of conflict forecasting, we next present a set of classification matrices for our government and

rebel conflict dependent variables. To create these matrices, we began by calculating in-sample

and out-of-sample NB model predictions for our government con f lictit and rebel con f lictit counts

using the the NB expected value formula:

E(yit |xit) = exit β̂ (1)

where β̂ corresponds to our (1997-2004) NB coefficient estimates, xit corresponds to our covari-

ates, and E(yit |xit) corresponds to our expected number of event counts. We then predicted compa-

rable in-sample and out-of-sample ZINB model government con f lictit and rebel con f lictit count

frequencies using the ZINB expected value formula

E(yit |xit ,zit) = exit β̂ −πiexit β̂ (2)

where, because our specific inflation equations follow a logistic probability distribution,

πit = Pr(i ∈ r0|zi) =
1

1+ e−zit γ̂
(3)

and where here, r0 corresponds to the zero-only regime, γ̂ corresponds to our 1997-2004 ZINB

inflation stage coefficient estimates, zit corresponds to our ZINB inflation stage covariates, β̂ cor-

responds to our 1997-2004 ZINB outcome-stage coefficient estimates, xit are our outcome stage
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covariates, and E(yit |xit) are our ZINB predicted expected event counts. These in-sample and out-

of-sample count forecasts were then used to derive a number of classification matrix statistics for

each set of models. Specifically, we calculated five classification matrix statistics for each model

by first dichotomizing our forecasted and observed counts in order to evaluate the accuracy of our

model predictions across two intuitive conflict thresholds:

1. Rebel and government initiated conflicts ≥ one conflict per country-month

2. Rebel and government initiated conflicts ≥ five conflicts per country-month

In addition to reporting the true “peace-conflict” proportions for each of these dichotomized thresh-

olds, we calculate and report five relevant classification statistics for each threshold of interest.

These five statistics are sensitivity, specificity, negative predicted values, positive predicted values,

and the percent correctly classified.18 Sensitivity reports the proportion of actual conflict country-

months that were correctly identified as conflict months (for a given threshold) by our forecasting

models. Specificity reports to the proportion of peace-country-months that were correctly iden-

tified as such by our models. Positive predictive values (PPVs) refer to the proportion of our

conflict-country-month forecasts that were actually observed to be conflict-country-months within

our sample. Negative predictive values (NPVs) refer to the proportion of peace-country-month

forecasts that were actually observed to be peace-country-months within the sample. Finally, our

‘correctly classified’ statistic reports the percentage of cases within a given sample that were actu-

ally classified as either peace or conflict by our forecasting model.

Table 2 reports classification statistics for our in-sample (1997-2004) and out-of-sample (2005-

2010) government and rebel con f lictit forecasts. Beginning first with government con f lictsit , this

Table demonstrates that across both conflict thresholds the ZINB model is superior to the NB

model in predicting country-months that actually experience a given threshold of government ini-

tiated conflict greater than zero (i.e. sensitivity). Specifically, the government con f lictit sensitivity

statistics in Table 2 indicate that our out-of-sample ZINB models are on average 8.4% better at ac-

curately forecasting country-months that experience at least one conflict (sensitivity= 81.97%) and
18The formulas for these classification statistics appear in the appendix.
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at-least five conflicts (sensitivity= 82.72%) than our NB models (sensitivity= 68.72% & 79.58%).

At the same time, across all government con f lictit specifications reported in Table 2, the ZINB and

NB models perform comparably well in terms of cases correctly classified (90.22%− 95.70%),

specificity (94.46%− 97.54%), and NPV (91.35%− 97.99%), which is unsurprising given the

overabundance of zero, “peace year” observations within the samples of interest. Regarding the

government con f lictit PPV statistics reported in Table 2, the NB model does do on average 4.7%

better than ZINB models. However, the sensitivity scores discussed above, as well as the slightly

lower NPVs reported in Table 2, together suggest that these relatively higher NB PPVs are the

result of an overprediction of zeroes—and an underprediction of government conflict (for each

conflict threshold)—by our NB models; rather than any superior ability in conflict forecasting. In

sum then, while both models do a comparable job of predicting peace-months, the ZINB model

is superior to the NB model in terms of predicting conflict-country-months, within both in-sample

and out-of-sample settings, which further corroborates hypotheses 1 and 2.

[Insert Table 2 about here]

We can draw similar conclusions from the classification statistics that are reported for rebel

con f lictsit in Table 2. Across both conflict thresholds the ZINB model is superior in sensitivity to

the NB model in predicting actual instances of rebel-initiated material violence. Specifically, Table

2 indicates that the out-of-sample ZINB model is on average 7.2% better at accurately forecasting

country-months that experience at least one conflict (sensitivity= 80.05%) and at-least five con-

flicts (sensitivity= 80.41%), relative to comparable NB models (sensitivity= 68.31% & 77.84%).

Across all rebel con f lictsit specifications reported in Table 2 the ZINB and NB models again

perform comparably well in terms of cases correctly classified (89.45%− 95.86%), specificity

(93.42%− 97.96%), and NPV (90.04%− 97.71%), which again is unsurprising given the over-

abundance of zero, “peace year” cases within the samples of interest. Finally, the PPVs reported in

Table 2 suggest that the NB model does on average 5.9% better than ZINB models, which is likely

the result of an overprediction of zeroes, and an underprediction of rebel conflict (for each conflict

threshold) by our NB models. Thus, while both the NB and ZINB models do a comparable job
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of predicting peace-months, the ZINB model is superior to the NB model in terms of predicting

actual instances of rebel con f lictsit , within both an in-sample and out-of-sample setting, which is

strong support for hypothesis one, and indirect support for hypothesis 2.

Marginal Calibration Diagrams

For a more comprehensive evaluation of our government and rebel conflict forecasting-models,

we next compare the marginal calibration of our NB and zero ZINB count forecasts to the actual

count values observed in our true (training and validation) datasets. In contrast to the classifi-

cation matrices discussed above, marginal calibration diagrams offer a comprehensive view of

count-model forecasting accuracy across the entire range of possible event counts. Specifically,

marginal calibration comparisons evaluate the calibration of probabilistic count forecasts against a

set of observed counts, where marginal calibration is fully achieved if one’s average observed count

forecasts equal one’s average probabilistic forecasts as T → ∞, provided that all mass is placed on

finite values (Gneiting, Balabdaoui and Raftery 2007). To calculate marginal calibrations for our

models of interest, we first define P as a predictive probability distribution on the set of nonnega-

tive integers resulting from the probabilistic forecasts derived from our count models. Assuming

then that each observed count, x(it), is a random draw from its respective probabilistic forecast, a

histogram of these observed counts will be statistically comparable to the composite distributions

of our aggregated predictive distributions P(it) (Czado, Gneiting and Held 2009). When can then

represent these aggregations graphically via a marginal calibration diagram, which here compares

the predicted frequencies,

p̂x =
n

∑
i=1

(P(it)
x −P(it)

x−1) or p̂(xa,xb] =
n

∑
i=1

(P(it)
xb −P(it)

xa ) (4)

for specific x values or intervals (xa,xb], to their empirical counterparts,

fx =
n

∑
i=1

1(x(it) = x) or f(xa,xb] =
n

∑
i=1

1(xa < x(it) ≤ xb), (5)

in an extension of the marginal calibration diagram formulas presented in Czado, Gneiting and
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Held (2009). This diagnostic tool thereby allows one to evaluate the performance of count forecasts

across the entire range of observed counts, rather than for a single dichotomous threshold at a

time, as was the case for the classification tables presented above. Marginal calibration diagrams

comparing observed count values to ZINB and NB model forecasts were calculated for our 1997-

2004 government and rebel conflict in-sample predictions, and for our 2005-2010 out-of-sample

forecasts.19 These marginal calibration diagrams appear in Figures 2 and 3. Importantly, the zero-

category (peace-country-month) values and predictions are omitted from these figures so as not

to visually distort the variation that exists across the (NB and ZINB model) predicted frequencies

and their empirical counterparts for the monthly counts of government and rebel initiated conflict

greater than zero (i.e. conflict country-months), which are of the most interest to the study at hand.

Figure 2 reports marginal calibration diagrams for our in-sample (1997-2004) out-of-sample

(2005-2010) forecasts of government con f lictsit . This Figure suggests that, although both mod-

els do a competent job of predicting government initiated conflicts, the ZINB models are superior

to the NB models in calibration. To see this, we focus our discussion here on the out-of-sample

predictions (Figure 2b). Turning to Figure Figure 2b, note first that our NB model substantially

over predicts the number of country-months experiencing a single instance of government initi-

ated civil conflict (by 130%) while the ZINB model only slightly under predicts the number of

country-month instances of a single observed government initiated conflict within our validation

sample (by 16%). The ZINB and NB models then each do a fairly accurate job of forecasting ob-

servations with observed monthly conflict counts lying between two and five (inclusive). However,

as we begin to aggregate across higher levels of government initiated conflict counts in Figure 2,

we see an increased divergence in NB-to-ZINB forecasting accuracy that again favors the ZINB

model. In particular, the ZINB model does a much better job of predicting the spike in government

conflict frequencies that we observe across bins (5,10], (10,25], and (25,50]. Specifically, while

the ZINB model under predicts observations lying within these conflict thresholds by an average

of 31%, our comparable NB predictions are off by an average of 54%. Lastly, both models do a

19Marginal calibration diagrams calculated over the entire 1997-2010 period are comparable to those described
here, and are available upon request.
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comparable job of predicting the (exceedingly rare) frequencies of monthly government initiated

conflicts lying within the final (50,100] interval.20 Overall, Figure 2 indicates that the NB model

of government con f lictsit tends to over-predict low-level country-month instances of government

initiated civil conflict and under-predict higher levels of monthly conflict. By contrast, the ZINB

model of government con f lictsit does a much better job of accurately predicting monthly conflict

frequencies across this variable’s entire range, although the ZINB model has similar difficulties in

accurately predicting country-months experiencing very high levels of government-initiated civil

conflicts. Thus, the marginal calibration diagrams in Figure 2 suggest that ZINB models do a su-

perior job of forecasting government con f lictsit , relative to a comparable NB models, which is

strong support for hypothesis 1.

[Insert Figures 2 and 3 about here]

Figure 3 presents marginal calibration diagrams of our ZINB and NB model in-sample and

(1997-2004) out-of-sample (2005-2010) predictions of rebel con f lictsit . As above, this Figure

suggests that the ZINB model is superior in calibration to the NB model, and to elucidate this we

focus our discussion heretofore on our out-of-sample predictions (Figure 3b). Here, we can first see

that our NB model over-predicts the number of country-months experiencing a single instance of

rebel initiated conflict by 119%. By contrast, our ZINB model does a much better job of prediction

within this range of monthly conflicts, with ZINB out-of-sample forecasts under-predicting the

frequency of single-rebel-conflict country-months by only 15%. The ZINB and NB models each do

a commensurate job of forecasting countries experiencing between two and five conflicts per month

(inclusive). Aggregating across higher levels of monthly rebel initiated conflict counts, we find in

Figure 3 that as above, our ZINB model better predicts the increased number of country-months

experiencing conflicts across these heightened conflict intervals. For example, within the (5,10],

(10,25], (25,50] monthly conflict intervals, the out-of-sample country-month predictions made by

our ZINB model are off by an average 24%, whereas comparable NB model predictions are off by

an average 45%. Lastly, although both models do a comparable job of predicting the frequencies
20Although the NB model forecasts were in this case slightly closer to the actual count frequencies.
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of monthly rebel initiated conflicts lying within the final (50,100] range, we can note here that the

ZINB model frequency forecasts are slightly closer to the actual count frequencies. Hence, the NB

model discussed here over-predicts country-month instances of (rebel initiated) material conflict

for low-level country-month conflict counts (i.e. values of rebel con f lictsit ranging from zero

to approximately three) and under-predicts higher levels of monthly conflict (i.e. values of rebel

con f lictsit between five and 50). By contrast, the ZINB model accurately predicts conflict across

the entire range of monthly rebel-initiated conflicts, although it also occasionally under predicts the

number of countries experiencing low levels of rebel-initiated conflicts. Therefore, and in support

of our hypotheses, the marginal calibration diagrams in Figure 3 suggest that our ZINB models

provide more accurate forecasts of rebel con f lictsit than do our NB models.

ZINB Comparisons

While the above analysis demonstrates the superiority of the ZINB conflict models over compa-

rable NB models (hypothesis 1), it is only suggestive as to the forecasting-advantages of including

lagged conflict measures within the inflation stage of the ZINB models (hypothesis 2). To better

assess the latter, we build upon the ZINB analysis presented above by incrementally adding-in an

ever-expanding number of lagged conflict variables to the inflation stages of our ZINB models.

While doing so, we hold these models’ outcome (i.e. count) stage covariate specifications fixed

to the count-stage specifications reported above, with additions of 3 and 4 month lagged values of

government con f lictit and rebel con f lictit . In our inflation stages, we begin with a ZINB model

reporting only an inflation stage constant, and then add ln GDPpc to this stage, evaluating the re-

sults at both steps. We next sequentially add 1-to-5 month lagged values of government con f lictit

and rebel con f lictit to the inflation stage of our ZINB model, and again evaluate the results at each

step. For each of our two dependent variables, the resultant seven (nested) ZINB specifications

are then compared via a number of model-fit statistics. Vuong tests indicate that for all ZINB

models of both government con f lictit and rebel con f lictit , the inclusion of each successive pair of

lagged government con f lictit and rebel con f lictit inflation stage covariates produces a significant

(p < .01 ) improvement in model fit and model performance. Likelihood ratio tests similarly sug-
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gest that the addition of 1, 2, 3, 4, and 5 month lags of government con f lictit and rebel con f lictit

to the inflation stage of our ZINB models produces a significant (p < .01) improvement in model

fit. Finally, in comparing the AICs of our ZINB models, we find that each pair-wise comparison

preferred a more-fully specified ZINB model to a given ZINB model with fewer inflation stage

(lagged conflict) covariates. Hence, a wide range of model fit statistics further corroborate our ini-

tial findings (in Table 1) that past levels of civil conflict serve as significant and robust predictors

of zero inflation, which is in support of hypothesis 2.

To determine whether these lagged inflation-stage covariates affect our actual conflict fore-

casts, we next evaluate our new models using a series of sensitivity plots. These plots compare

the sensitivity levels of our out-of-sample conflict predictions for the seven sets of (government

con f lictit and rebel con f lictit) ZINB model variants described above.21 The sensitivity statistics

used in these plots report the proportion of actual conflicts that our models predicted as such, and

thus are particularly useful in comparing the conflict-forecasting accuracy of our ZINB models.

These sensitivity plots are very similar in motivation to the predictive power plots used by Ward,

Greenhill and Bakke (2010, 369), with the exception that we plot the fixed sensitivity levels of our

model’s forecasts, rather than the total-area under a receiver operating characteristic (ROC) curve.

We favor the former not only because our dependent variables and predictions encompass values

greater than one, but also because the extreme proportion of zeroes in our sample—in conjunction

with comparable specificity levels across all ZINB models—together tend to obscure the differ-

ences in actual sensitivity levels across these models, when aggregating across all discrimination

thresholds. As in the classification matrix applications above, we calculated government con f lictit

and rebel con f lictit sensitivity statistics for both the “at-least 1-monthly-conflict” and “at least

5-monthly conflicts” thresholds. We then repeated this process iteratively for our ZINB models

as more lagged values of government con f lictit and rebel con f lictit were incrementally added to

the models’ inflation stages (beginning with a ZINB model that includes only a constant in the

inflation stage). The resultant sensitivity plots for our 1-monthly conflict and 5-monthly conflict

21In-sample sensitivity plots are comparable, and are not reproduced here in the interest of space.
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thresholds appear in Figure 4 below.

[Insert Figure 4 about here]

Beginning with the “at-least 1-monthly-conflict” plots in Figure 4a, we can note that these

plots strongly support hypothesis 2, for both our government con f lictit and rebel con f lictit ZINB

models. For government con f lictit , Figure 4a first indicates that adding ln GDPpc to our infla-

tion stage increases our ability to accurately predict instances of government initiated conflict by

roughly 4%. By comparison, subsequently adding 1, 1-2, or 1-3 month lags of government and

rebel con f lictit to the inflation stage of our government con f lictit ZINB models produces 8%, 9%,

and 13% increases in sensitivity, again relative to the “constant-only” inflation stage model. Our

rebel con f lictit ZINB model exhibits comparable increases in sensitivity (of 5%, 11% and 11%)

for these same three pairs of (1-3 month) lagged conflict models, although ln GDPpc contributes lit-

tle to sensitivity in this case. Next, note that the marginal increase in sensitivity provided for by the

addition of 4, and 4-5 month conflict lags is negligible in either model. Indeed, in the case of rebel

con f lictit , adding 4 or 4-5 month conflict lags to our inflation stage actually decreases sensitivity

relative to our 1-3 lagged conflict specification. For the government con f lictit model, additions of

4 (or 4-5) month conflict lags do slightly improve sensitivity, but do so at a decreasing rate, relative

to the gains made by earlier inflation-stage covariate-additions. Thus, the contributions of past

conflict-levels to our ability to distinguish between inflated and non-inflated peace-months appears

to diminish after 2-3 months, suggesting that these inflation-covariates are accounting for a tempo-

rally varying—rather than fixed—form of zero inflation. Figure 4a is therefore strong support for

hypothesis 2, as it demonstrates that the addition of lagged conflict values to the inflation stage of

our ZINB models produces a marked improvement in the accuracy of our conflict forecasts.

Relative to Figure 4a, the “at-least 5-monthly-conflicts” sensitivity plots in Figure 4b report

higher initial levels of sensitivity, and hence we find smaller additional gains in sensitivity across

all covariate additions. Nevertheless, the trends in Figure 4b are comparable to those discussed

above. Relative to a ZINB model with a “constant-only” inflation stage, the inclusion of 1, 1-2, and

1-3 month lagged conflicts in the inflation stage of our ZINB models increases the sensitivity levels

24



of our government con f lictit (of 2%, 3%, and 3%, repetitively) and rebel con f lictit (of 2%, 3%,

and 3%) forecasts. By contrast, the addition of ln GDPpc to the inflation stages of these government

con f lictit and rebel con f lictit models yields an average improvement in sensitivity of roughly 0%.

As above, any additional gains in sensitivity are negligible and in many cases negative when 4-5

month lagged conflict measures are added to either our government con f lictit or rebel con f lictit

inflation stages. Hence, the benefit of including lagged levels of conflict within the inflation stages

of our models dissipates after approximately three months. Substantively, this suggests that—

in addition to the time-invariant structural factors that may predispose some countries from ever

experiencing civil conflicts—unobserved short-term (i.e. 1-3 month) temporal dynamics such as

mutually reinforcing stalemates, tit-for-tat strategies, de-facto truces or exogenous conditions (e.g.

seasonal weather) appear to also preclude government and rebel actors from fighting for short

periods of time. Modeling these temporal dynamics in the manner presented above allows us to

better identify, and hence predict, the observations which are most likely to experience conflict

in any given month. Therefore overall, the sensitivity results discussed here are further evidence

in support hypothesis 2, which contends that the inclusion of lagged conflict variables within the

inflation stage of our ZINB models will significantly improve our conflict forecasting accuracy.

Conclusion

Zero inflated count models can improve our ability to forecast monthly frequencies of rebel

and government-initiated conflicts. What’s more, using zero-inflated models in conjunction with

lagged conflict covariates gives these models a decided advantage over other commonly used ap-

proaches. On average, the ZINB models discussed above were roughly 8% better than comparable

NB models at accurately forecasting out-of-sample country-months that experienced at least one

civil conflict and at-least five civil conflicts. Likewise, marginal calibration diagrams suggest that

ZINB models do a much better job of forecasting monthly conflict frequency across the entire

range of possible monthly conflict counts, again relative to comparable NB models. We also found

that the inclusion of lagged values of rebel and government initiated conflicts within the inflation
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stages of zero inflated count models yields a considerable improvement in forecasting accuracy,

relative to ZINB models which do not include such covariates in the inflation stage. Specifically,

the addition of 1-3 month lagged measures of (logged) civil conflict frequency to the inflation stage

of our ZINB models improved our ability to accurately forecast countries experiencing at least one,

and at least five, monthly civil conflicts by 12% and 3% respectively . Averaging across these two

thresholds, as well as across our government and rebel conflict models, our final ZINB models

accurately predicted 81% of all monthly-conflict events.

Substantively, our results indicate that recent levels of rebel and government initiated material

conflict have a direct, positive effect on present levels of each type of conflict, which is in line

with theories of conflict reciprocity and conflict inertia (Gurr 1970; Hibbs 1973; Francisco 1995;

Goldstein and Freeman 1990). However, we also find that the magnitude of this positive relation-

ship tends to be overstated when the presence of zero-inflation is ignored within one’s statistical

model. The results discussed above also suggest that time-varying peace-inducing dynamics—

such as secret or de-facto truces or stalemates—do occur, and that modeling such phenomena can

enhance our abilities to predict and understand civil conflict. Specifically, we find that past levels

of monthly government and rebel initiated conflicts serve as excellent ex-ante observable indica-

tors of time-varying, structurally-inflated peace-periods. However, sensitivity analyses indicate

that the contribution of these lagged conflict measures to the modeling of such temporal stale-

mates dissipates markedly for any conflict measures beyond 3-month lags. Therefore, any gains

to be had from the modeling of temporary (structural) peace-spells with lagged conflict measures

appear to be temporally limited to the 1-3 month period immediately prior to a civil conflict pe-

riod of interest. Finally, in line with past scholarship (Hill et al. 2011), we find that ln GDPpc

has a positive and significant effect on the likelihood of a country-month ever experiencing gov-

ernment initiated conflicts targeting rebels, but a null effect on the likelihood of domestic rebel

groups initiating such conflicts against government actors. This adds another layer of nuance to

past ln GDPpc-peace-inflation findings, and suggests that ln GDPpc serves as more of a constraint

against government-initiated conflict than against citizen-initiated violence.
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For researchers interested in the direct effect of any variable on civil conflict, these findings

suggest that one can substantially reduce the bias imposed by excess zeroes on one’s analysis by

(1) using a zero-inflated model and (2) including appropriate lagged values of conflict within the

inflation stage of zero inflated models. A key advantage of this approach is that—no matter the

temporal aggregation or cross-sectional unit of observation—lagged dependent (conflict) variables

will be available to the researcher for a majority of the sample of interest. Given the challenges

associated with coding additional (time varying) civil conflict covariates in forecasting models as

one moves to (1) smaller-and-smaller units of temporal (or cross-sectional) aggregation or (2) real-

time forecasting,22 lagged conflict variables will be especially useful in these contexts. In fact,

the zero-inflated approach outlined here is likely to yield even larger improvements in forecast-

ing accuracy when applied to datasets aggregating over smaller temporal or geographic units of

observation, such as days or districts, since under these circumstances the level of zero-inflation

will in most cases become more severe. Finally, while zero-inflated count models are used here,

the approach described above is in theory applicable to the entire range of zero-inflated, limited

dependent variable models currently available.23

This article makes several additional contributions to political forecasting methodology. Event

counts, selection models, and discrete (un)ordered outcomes are integral to the study of civil con-

flict. However, a current limitation to civil conflict forecasting, and to conflict studies in gen-

eral, has been the underdevelopment—across the sciences—of forecasting models (and assessment

techniques) for discrete dependent variables of the count, ordered, or unordered varieties (Czado,

Gneiting and Held 2009). We address these deficiencies above by providing the first forecasting

assessment of civil conflict frequency; while using of a newly developed dataset that uniquely mea-

sures monthly conflict frequency for both rebel and government initiators. In doing so, we provide

examples of several robust techniques that one can use in assessing the accuracy, specificity, and

22For a discussion of the forecasting challenges and advantages associated with smaller units of aggregation and
real-time forecasting, see Brandt, Freeman and Schrodt (2011); Schneider, Gleditsch and Carey (2011) and Rustad
et al. (2011).

23Such as recently popularized mixture models for duration data (Svolik 2008), binary dependent variables (Xiang
2010; Beger et al. 2011), and discrete ordered outcomes (Harris and Zhao 2007; Hill et al. 2011).
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sensitivity of one’s count forecasts. To this end, we present marginal calibration diagrams, com-

parative fit statistics, and classification statistics that together allow the researcher to begin to gain

a sense of count model forecasting precision. It is thereby hoped that, through these examples, this

article will serve as a useful starting point for future conflict-event forecasting researchers faced

with a dependent variable that is limited in nature, or contaminated with structural zeroes.

There are a number of promising directions for future research. The use of lagged civil con-

flict values in the inflation stage of our ZINB models, while an improvement over simpler NB

and ZINB models, falls far short of an ideal inflation stage specification. There is a breadth of

available time-varying and structural factors that could likely be used to better model the inflation

stage of such models, and a comprehensive assessment of which set of covariates ultimately best

predicts the propensity for a peace observation to be a structural zero would greatly advance the

fields of conflict studies and conflict forecasting. Given the low explanatory power of many tradi-

tional conflict correlates, machine learning (e.g., Furnkranz, Petrak and Trappl 1997; Wickboldt,

Bercovitch and Piramuthu 1999) and neural networking (Schrodt 1991; Beck, King and Zeng

2000) techniques may serve as a useful next-steps to the identification of a generalizable and com-

prehensive set of ex-ante observable inflation-stage covariates. Accomplishing this task will bring

us closer to developing a systematic approach to the accurate identification of the (proportionally

small) subset of (non-structural) observations within our samples whose ex-ante probabilities of

conflict is indeed high (Beck, King and Zeng 2000). Drawing on recent environmetric advances

in spatial zero-inflated count models (Agarwal, Gelfand and Citron-Pousty 2002; Ver Hoef and

Jansen 2007), a second avenue by which the above study could be directly improved upon would

be through the development of spatial, or space-time, ZINB forecasting models of civil conflict.

Accounting for space and time in studies of civil conflict has been shown to be critical for both

theory testing and the development of accurate conflict forecasts (Ward and Gleditsch 2002; Wei-

dmann and Toft 2010; Weidmann and Ward 2010), and the models presented in Agarwal, Gelfand

and Citron-Pousty (2002) and Ver Hoef and Jansen (2007) therefore serve as excellent templates

for the future refinement of zero-inflated conflict forecasting models.
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Weidmann, Nils B. and Michael D. Ward. 2010. “Predicting Conflict in Space and Time.” Journal

of Conflict Resolution 54(6):883–901.

Weidmann, Nils B. and Monica Duffy Toft. 2010. “Promises and Pitfalls in the Spatial Prediction

of Ethnic Violence: A Comment.” Conflict Management and Peace Science 27(2):159–176.

Wickboldt, Anne-Katrin, Jacob Bercovitch and Selwyn Piramuthu. 1999. “Dynamics of Interna-

tional Mediation: Analysis Using Machine Learning Methods.” Conflict Management and Peace

Science 17(1):49–68.

Wood, Elisabeth Jean. 2003. Insurgent Collective action and Civil War in El Salvador. Cambridge,

UK: Cambridge University Press.

World Bank. 2011. “World Development Indicators.” http://data.worldbank.org/

data-catalog/world-development-indicators.

Xiang, Jun. 2010. “Relevance as a Latent Variable in Dyadic Analysis of Conflict.” Journal of

Politics 72(2):484–498.

34

http://data.worldbank.org/data-catalog/world-development-indicators
http://data.worldbank.org/data-catalog/world-development-indicators


Appendix

[Insert Table 3 about here]

Classification Matrix Formulas

Sensitivity =
number o f True Positives

number o f True Positives+number o f False Negatives
(6)

Speci f icity =
number o f True Negatives

number o f True Negatives+number o f False Positives
(7)

Pos. Predictive Value =
number o f True Positives

number o f True Positives+number o f False Positives
(8)

Neg. Predictive Value =
number o f True Negatives

number o f True Negatives+number o f False Negatives
(9)

Correctly Classi f ied =
number o f True Positives+number o f True Negatives

number o f cases
(10)
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Figure 1: Monthly Frequencies of Rebel and Government Initiated Domestic Material Conflicts,
1997-2010
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Table 1: NB and ZINB Models of Government and Rebel Initiated Material Conflict, 1997-2004

NB Gov. ZINB Gov. NB Reb. ZINB Reb.
Ln Gov.Con f lictit−1 0.355** 0.279** 0.143* 0.165**

(0.063) (0.048) (0.066) (0.053)
Ln Gov.Con f lictit−2 0.129* 0.131* 0.026 -0.034

(0.065) (0.051) (0.069) (0.054)
Ln Gov.Con f lictit−3 0.225** 0.101 0.168* 0.125*

(0.063) (0.052) (0.066) (0.053)
Ln Reb.Con f lictit−1 0.364** 0.200** 0.556** 0.352**

(0.060) (0.044) (0.061) (0.044)
Ln Reb.Con f lictit−2 0.270** 0.059 0.342** 0.136**

(0.062) (0.048) (0.063) (0.050)
Ln Reb.Con f lictit−3 0.005 -0.032 0.066 0.017

(0.062) (0.050) (0.063) (0.049)
Ln GDPpc -0.314** -0.061 -0.117** -0.012

(0.040) (0.052) (0.033) (0.041)
Ln Population 0.247** 0.015 0.170** -0.017

(0.023) (0.026) (0.021) (0.024)
GDP;Growth 0.004 0.019 -0.066** -0.044**

(0.012) (0.011) (0.010) (0.012)
Count Constant -2.889** 0.734 -2.427** 1.254**

(0.473) (0.528) (0.430) (0.481)
(Log) T heta 0.733** 0.534** 0.634** 0.431**

(0.054) (0.088) (0.047) (0.087)
Ln Gov.Con f lictit−1 -0.636** -0.200

(0.202) (0.200)
Ln Gov.Con f lictit−2 -0.488* -1.034**

(0.212) (0.303)
Ln Gov.Con f lictit−3 -0.975** -0.510*

(0.244) (0.226)
Ln Reb.Con f lictit−1 -0.666** -0.810**

(0.170) (0.169)
Ln Reb.Con f lictit−2 -0.838** -0.998**

(0.202) (0.223)
Ln Reb.Con f lictit−3 -0.199 -0.488*

(0.248) (0.208)
Ln GDPpc 0.180* -0.021

(0.217) (0.066)
In f lation Constant -1.211** -0.281

(0.605) (0.517)
Log Likelihood -2393 -2174 -2618 -2362
AIC 4808.9 4386.4 5257.1 4761.3

Note: N=2,418. ** indicates p < .01; * indicates p < .05; values in parentheses are standard errors
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Table 2: Classification

NB: ZINB: NB: ZINB:
Threshold 1 Threshold 1 Threshold 2 Threshold 2

Monthly Monthly Monthly Monthly
Con f licts≥ 1 Con f licts≥ 1 Con f licts≥ 5 Con f licts≥ 5

Monthly Government Initiated Material Conflict, 1997-2004 (In Sample)
Sensitivity Pr(+|D) 75.08% 81.82% 78.00% 83.67%
Speci f icity Pr(−| ∼ D) 96.44% 94.63% 96.18% 95.04%
Positive PV Pr(D|+) 87.28% 83.22% 74.29% 70.51%
Negative PV Pr(∼ D|−) 92.24% 94.11% 96.86% 97.62%
Correctly Classi f ied 91.29% 91.19% 93.92% 93.63%
Number o f Cases (con f lict/peace) 594/1,824 594/1,824 300/2,118 300/2,118
Number o f Obs. 2,418 2,418 2,418 2,418

Monthly Government Initiated Material Conflict, 2005-2010 (Out of Sample)
Sensitivity Pr(+|D) 68.27% 81.97% 79.58% 82.72%
Speci f icity Pr(−| ∼ D) 96.54% 94.46% 97.54% 96.29%
Positive PV Pr(D|+) 85.03% 81.00% 78.76% 71.82%
Negative PV Pr(∼ D|−) 91.35% 94.79% 97.66% 97.99%
Correctly Classi f ied 90.22% 91.67% 95.70% 94.89%
Number o f Cases (con f lict/peace) 416/1,444 416/1,444 191/1,669 191/1,669
Number o f Obs. 1,860 1,860 1,860 1,860

Monthly Citizen Initiated Material Conflict, 1997-2004 (In Sample)
Sensitivity Pr(+|D) 70.63% 78.44% 74.76% 77.35%
Speci f icity Pr(−| ∼ D) 95.61% 93.42% 97.06% 95.50%
Positive PV Pr(D|+) 85.28% 81.10% 78.84% 71.56%
Negative PV Pr(∼ D|−) 90.04% 92.33% 96.33% 96.64%
Correctly Classi f ied 90.00% 89.45% 94.21% 93.18%
Number o f Cases (con f lict/peace) 640/1,778 640/1,778 309/2,109 309/2,109
Number o f Obs. 2,418 2,418 2,418 2,418

Monthly Citizen Initiated Material Conflict, 2005-2010 (Out of Sample)
Sensitivity Pr(+|D) 68.31% 80.05% 77.84% 80.41%
Speci f icity Pr(−| ∼ D) 96.72% 93.72% 97.96% 97.12%
Positive PV Pr(D|+) 86.10% 79.12% 81.62% 76.47%
Negative PV Pr(∼ D|−) 91.13% 94.05% 97.43% 97.71%
Correctly Classi f ied 89.90% 90.59% 95.86% 95.37%
Number o f Cases (con f lict/peace) 426/1,434 426/1,434 194/1,666 194/1,666
Number o f Obs. 1,860 1,860 1,860 1,860

Note: For threshold of interest, +=predict conflict; −=predict peace; D =actually a conflict; ∼ D =actuallypeace
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Table 3: Asian and Oceanic Countries Included in the 1997-2010 Sample

Countries
Australia Mongolia
Bangladesh Nepal
Bhutan New Zealand
Burma North Korea
Cambodia Papua New Guinea
China Philippines
Comoros Russia
Fiji Singapore
India Solomon Islands
Indonesia South Korea
Japan Sri Lanka
Laos Taiwan
Madagascar Thailand
Malaysia Vietnam
Mauritius

Figure 2: Marginal Calibration Diagrams for Government Initiated Conflict

(a) In-Sample Predictions (b) Out-of-Sample Predictions
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Figure 3: Marginal Calibration Diagrams for Rebel Initiated Conflict

(a) In-Sample Predictions (b) Out-of-Sample Predictions
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Figure 4: Sensitivity Comparisons for ZINB Out of Sample Predictions

(a) Conflict Threshold of 1 (b) Conflict Threshold of 5
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